Hyponatraemia: Difference between revisions

From greek.doctor
Created page with "'''Hyponatraemia'''"
 
No edit summary
 
(25 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Hyponatraemia'''
<section begin="clinical biochemistry" />'''Hyponatraemia''' is a disorder of [[sodium]] homeostasis characterised by low levels of sodium (< 135 or 136 mmol/L). It's the most common electrolyte abnormality, affecting 3-10% of patients in the emergency department. It's usually mild and is self-limiting, but severe hyponatraemia is lethal. Determining the volume status and serum osmolality of the patient is important in determining the cause. Treatment involves water restriction or sodium repletion. The opposite of hyponatraemia is [[hypernatraemia]].
 
{{Infobox medical condition
| name = Hyponatraemia
| definition = Serum sodium level < 136 mmol/L
| synonym = Hyponatremia
| cause = Heart failure, liver failure, dehydration, and SIADH
| prevalence = Relatively common
| symptoms = Anything from headache and mild altered mental status to coma
| treatment = Water restriction, sodium repletion
| complications = Cerebral oedema, osmotic demyelination syndrome
}}
== Grading of severity ==
{| class="wikitable"
|+
!Sodium level
!Severity
|-
|136 - 130
|Mild
|-
|129 - 120
|Moderate
|-
|< 120
|Severe
|}
 
== Classification ==
Establishing the patient's fluid status and serum osmolality (tonicity) is important to determine the underlying cause. We usually distinguish between hypotonic, isotonic, and hypertonic hyponatraemia. In case of hypotonic hyponatraemia, the fluid status is essential in the evaluation.
 
== Etiology ==
Hyponatraemia can occur secondary to many disorders.
 
* Isotonic hyponatraemia
** [[Hyperproteinaemia]]
** [[Hyperlipidaemia]]
* Hypertonic hyponatraemia
** [[Hyperglycaemia]]
** Intake of mannitol, sorbitol, glycerol, maltose
** [[Contrast material]]
 
For hypotonic hyponatraemia, possible causes depends on the fluid status:
{| class="wikitable"
|+Causes of hypotonic hyponatraemia
!Hypovolaemic hypotonic hyponatraemia
!Normovolaemic hypotonic hyponatraemia
!Hypervolaemic hypotonic hyponatraemia
|-
|Extrarenal fluid loss ([[dehydration]], [[diarrhoea]], [[vomiting]], [[burn injury]])
|[[Syndrome of inappropriate anti-diuretic hormone]] (SIADH)
|[[Acute kidney injury]] or [[chronic kidney disease]]
|-
|Renal fluid loss ([[diuretic]] (especially [[thiazides]]), [[nephropathy]], [[mineralocorticoid]] deficiency, [[cerebral salt wasting syndrome]])
|Postoperative hyponatraemia
|[[Heart failure]]
|-
|
|[[Hypothyroidism]]
|[[Liver failure]]
|-
|
|Low sodium intake (usually in elderly or people with alcohol use disorder)
|[[Nephrotic syndrome]]
|}
Hyponatraemia is most commonly hypotonic. The most common causes overall are heart failure, liver failure, dehydration, and SIADH.
 
Depending on whether the cause is acute or chronic, hyponatraemia can be acute or chronic as well. Hyponatraemia is acute if it has developed over 48 hours or less.
 
== Pathophysiology ==
One of sodium's main functions is to maintain tonicity, i.e. the same osmolality in the intracellular and extracellular spaces. When hyponatraemia occurs, the plasma osmolality usually decreases while the intracellular osmolality remains. This causes fluid to flow from the extracellular space to the intracellular space, causing oedema. This is most dangerous in the brain. The symptoms and potential lethality of hyponatraemia is caused by swelling of brain cells, intracellular brain oedema.
 
Cells can compensate for the change in tonicity. When the osmolality of the extracellular space decreases, cells can release electrolytes (like potassium) and osmotically active organic molecules (like myoinositol and choline compounds) to decrease the intracellular osmolality to try to achieve isotonicity. However, this compensation takes several days, explaining why acute hyponatraemia is more dangerous than a chronic one.
 
== Clinical features ==
Clinical features in hyponatraemia depends on the degree of intracellular brain oedema. As such, mild acute hyponatraemia or chronic hyponatraemia (even if moderate) usually does not lead to brain oedema and is therefore asymptomatic. However, if the sodium levels are severely decreased, or the drop in sodium level occurs suddenly, brain oedema occurs. The symptoms are non-specific. Typical symptoms include (in increasing order of severity):
 
* Dizziness
* Fatigue
* Headache
* Impaired mental status
* Seizures
* Coma
 
== Diagnosis and evaluation ==
Determining the cause is the first priority, and requires a systematic approach and determining tonicity, volume status, and renal sodium loss.
 
=== Determining tonicity ===
To determine the cause, we must know the tonicity of the hyponatraemia. Evaluation of ''effective'' serum osmolality is important for this. The (non-effective) serum osmolality can be measured in a lab test, but this also counts so-called ''ineffective osmoles'', which are osmotically active compounds which ''do not'' affect the movement of water between cells and extracellular fluid because these ineffective osmoles can freely cross cell membranes. Urea and ethanol are two such ineffective osmoles.
 
In any case, the effective serum osmolality can be calculated by either:
 
* Effective osmolality = serum glucose + 2 x serum sodium
* Effective osmolality = measured serum osmolality - (urea + ethanol)
 
We can then use this value to determine the tonicity of the hyponatraemia:
 
* Effective serum osmolality < 281 mosm/kg -> hypotonic hyponatraemia
* Effective serum osmolality 281-295 mosm/kg -> isotonic hyponatraemia
* Effective serum osmolality > 295 mosm/kg -> hypertonic hyponatraemia
 
... which can be used to narrow the list of possible causes.
<section end="clinical biochemistry" />
=== Determining fluid status ===
Determining fluid or volume status also helps us determining the cause, especially if there is hypotonic hyponatraemia. Determining fluid status can be difficult, but there are some features which can help:
 
* Features of hypovolaemia
** Lower weight compared to normal
** Tachycardia or hypotension or orthostatic hypotension
** Increased capillary refill
** Weak peripheral pulse
** Decreased skin turgor
** Dry mucous membranes of the oral cavity and tongue
** Sunken fontanelle (in infants)
* Features of hypervolaemia
** Higher weight compared to normal
** Oedema ([[Peripheral oedema|peripheral]] or [[Pulmonary oedema|pulmonary]])
** [[Ascites]]
** Distended jugular vein
 
Evaluation of the skin turgor for volume status is unreliable in elderly, as they have decreased turgor regardless of fluid status.
 
=== Determining renal sodium loss ===
Measuring the level of sodium in the urine is important in the evaluation of hypovolaemic hypotonic hyponatraemia. High urine sodium (>25-40 mmol/L) points to renal disease, causing the kidney to excrete more sodium than necessary. Other possible causes include glucocorticoid and mineralocorticoid deficiency, diuretics, and cerebra salt wasting syndrome.
 
Low urine sodium (< 25 mmol/L) points to loss of sodium from places other than the kidney (extrarenal sodium loss), for example diarrhoea, vomiting, or third spacing of fluid.
 
== Management ==
Mild hyponatraemia does not usually require hospitalisation, but moderate, severe, or symptomatic hyponatraemia requires hospitalisation. Severe hyponatraemia requires [[intensive care]].
 
Treatment depends on the underlying cause. Any drugs which can contribute to hyponatraemia should be discontinued if possible. Fluid restriction and increased intake of dietary salt is usually sufficient, but fluid restriction should not be used in those who are hypovolaemic. People who have symptomatic hyponatraemia require hospital admission.
 
In moderate cases, intravenous infusion of isotonic (0,9%) NaCl can be considered. In severe hyponatraemia, hypertonic (3%) saline can be considered.
 
=== Rate of correction ===
Sodium levels must be corrected slowly to allow the body to reverse its compensatory mechanism to hypotonicity, especially in case of severe chronic hyponatraemia. Failure to do this will causes the serum osmolality to increase faster than the intracellular osmolality, which causes osmotic demyelination syndrome.
 
The sodium level should not increase more than (all of the following):
 
* 0,5 mmol/L per hour
* 10 mmol/L per the first 24 hours
* 18 mmol/L per the first 48 hours
 
In severe cases, the sodium level should increase even more slowly, not more than 6-8 units per 24 hour.
 
== Complications ==
 
=== Cerebral oedema ===
''Main article: [[Cerebral oedema]]''
 
Cerebral oedema is a potentially life-threatening complication of hyponatraemia, usually only seen in case of severe acute hyponatraemia. Oedema increases the intracranial pressure, which can cause [[cerebral herniation]].
 
=== Osmotic demyelination syndrome ===
Osmotic demyelination syndrome (ODS), previously called central pontine myelinolysis, is a complication of too rapid correction of severe chronic hyponatraemia. This is rare in case of sodium levels above 120 mmol/L or if the hyponatraemia has occured within a few days (as the body's compensatory mechanisms haven't kicked in yet).
 
Symptoms of ODS occur a few days after the correction, and include cerebellar symptoms and other neurological deficits. Some may experience locked-in syndrome. It may be reversible in some cases.
[[Category:Pathophysiology]]

Latest revision as of 20:26, 30 January 2024

Hyponatraemia is a disorder of sodium homeostasis characterised by low levels of sodium (< 135 or 136 mmol/L). It's the most common electrolyte abnormality, affecting 3-10% of patients in the emergency department. It's usually mild and is self-limiting, but severe hyponatraemia is lethal. Determining the volume status and serum osmolality of the patient is important in determining the cause. Treatment involves water restriction or sodium repletion. The opposite of hyponatraemia is hypernatraemia.

Hyponatraemia
Other namesHyponatremia
DefinitionSerum sodium level < 136 mmol/L
SymptomsAnything from headache and mild altered mental status to coma
ComplicationsCerebral oedema, osmotic demyelination syndrome
CausesHeart failure, liver failure, dehydration, and SIADH
TreatmentWater restriction, sodium repletion
FrequencyRelatively common

Grading of severity

Sodium level Severity
136 - 130 Mild
129 - 120 Moderate
< 120 Severe

Classification

Establishing the patient's fluid status and serum osmolality (tonicity) is important to determine the underlying cause. We usually distinguish between hypotonic, isotonic, and hypertonic hyponatraemia. In case of hypotonic hyponatraemia, the fluid status is essential in the evaluation.

Etiology

Hyponatraemia can occur secondary to many disorders.

For hypotonic hyponatraemia, possible causes depends on the fluid status:

Causes of hypotonic hyponatraemia
Hypovolaemic hypotonic hyponatraemia Normovolaemic hypotonic hyponatraemia Hypervolaemic hypotonic hyponatraemia
Extrarenal fluid loss (dehydration, diarrhoea, vomiting, burn injury) Syndrome of inappropriate anti-diuretic hormone (SIADH) Acute kidney injury or chronic kidney disease
Renal fluid loss (diuretic (especially thiazides), nephropathy, mineralocorticoid deficiency, cerebral salt wasting syndrome) Postoperative hyponatraemia Heart failure
Hypothyroidism Liver failure
Low sodium intake (usually in elderly or people with alcohol use disorder) Nephrotic syndrome

Hyponatraemia is most commonly hypotonic. The most common causes overall are heart failure, liver failure, dehydration, and SIADH.

Depending on whether the cause is acute or chronic, hyponatraemia can be acute or chronic as well. Hyponatraemia is acute if it has developed over 48 hours or less.

Pathophysiology

One of sodium's main functions is to maintain tonicity, i.e. the same osmolality in the intracellular and extracellular spaces. When hyponatraemia occurs, the plasma osmolality usually decreases while the intracellular osmolality remains. This causes fluid to flow from the extracellular space to the intracellular space, causing oedema. This is most dangerous in the brain. The symptoms and potential lethality of hyponatraemia is caused by swelling of brain cells, intracellular brain oedema.

Cells can compensate for the change in tonicity. When the osmolality of the extracellular space decreases, cells can release electrolytes (like potassium) and osmotically active organic molecules (like myoinositol and choline compounds) to decrease the intracellular osmolality to try to achieve isotonicity. However, this compensation takes several days, explaining why acute hyponatraemia is more dangerous than a chronic one.

Clinical features

Clinical features in hyponatraemia depends on the degree of intracellular brain oedema. As such, mild acute hyponatraemia or chronic hyponatraemia (even if moderate) usually does not lead to brain oedema and is therefore asymptomatic. However, if the sodium levels are severely decreased, or the drop in sodium level occurs suddenly, brain oedema occurs. The symptoms are non-specific. Typical symptoms include (in increasing order of severity):

  • Dizziness
  • Fatigue
  • Headache
  • Impaired mental status
  • Seizures
  • Coma

Diagnosis and evaluation

Determining the cause is the first priority, and requires a systematic approach and determining tonicity, volume status, and renal sodium loss.

Determining tonicity

To determine the cause, we must know the tonicity of the hyponatraemia. Evaluation of effective serum osmolality is important for this. The (non-effective) serum osmolality can be measured in a lab test, but this also counts so-called ineffective osmoles, which are osmotically active compounds which do not affect the movement of water between cells and extracellular fluid because these ineffective osmoles can freely cross cell membranes. Urea and ethanol are two such ineffective osmoles.

In any case, the effective serum osmolality can be calculated by either:

  • Effective osmolality = serum glucose + 2 x serum sodium
  • Effective osmolality = measured serum osmolality - (urea + ethanol)

We can then use this value to determine the tonicity of the hyponatraemia:

  • Effective serum osmolality < 281 mosm/kg -> hypotonic hyponatraemia
  • Effective serum osmolality 281-295 mosm/kg -> isotonic hyponatraemia
  • Effective serum osmolality > 295 mosm/kg -> hypertonic hyponatraemia

... which can be used to narrow the list of possible causes.

Determining fluid status

Determining fluid or volume status also helps us determining the cause, especially if there is hypotonic hyponatraemia. Determining fluid status can be difficult, but there are some features which can help:

  • Features of hypovolaemia
    • Lower weight compared to normal
    • Tachycardia or hypotension or orthostatic hypotension
    • Increased capillary refill
    • Weak peripheral pulse
    • Decreased skin turgor
    • Dry mucous membranes of the oral cavity and tongue
    • Sunken fontanelle (in infants)
  • Features of hypervolaemia

Evaluation of the skin turgor for volume status is unreliable in elderly, as they have decreased turgor regardless of fluid status.

Determining renal sodium loss

Measuring the level of sodium in the urine is important in the evaluation of hypovolaemic hypotonic hyponatraemia. High urine sodium (>25-40 mmol/L) points to renal disease, causing the kidney to excrete more sodium than necessary. Other possible causes include glucocorticoid and mineralocorticoid deficiency, diuretics, and cerebra salt wasting syndrome.

Low urine sodium (< 25 mmol/L) points to loss of sodium from places other than the kidney (extrarenal sodium loss), for example diarrhoea, vomiting, or third spacing of fluid.

Management

Mild hyponatraemia does not usually require hospitalisation, but moderate, severe, or symptomatic hyponatraemia requires hospitalisation. Severe hyponatraemia requires intensive care.

Treatment depends on the underlying cause. Any drugs which can contribute to hyponatraemia should be discontinued if possible. Fluid restriction and increased intake of dietary salt is usually sufficient, but fluid restriction should not be used in those who are hypovolaemic. People who have symptomatic hyponatraemia require hospital admission.

In moderate cases, intravenous infusion of isotonic (0,9%) NaCl can be considered. In severe hyponatraemia, hypertonic (3%) saline can be considered.

Rate of correction

Sodium levels must be corrected slowly to allow the body to reverse its compensatory mechanism to hypotonicity, especially in case of severe chronic hyponatraemia. Failure to do this will causes the serum osmolality to increase faster than the intracellular osmolality, which causes osmotic demyelination syndrome.

The sodium level should not increase more than (all of the following):

  • 0,5 mmol/L per hour
  • 10 mmol/L per the first 24 hours
  • 18 mmol/L per the first 48 hours

In severe cases, the sodium level should increase even more slowly, not more than 6-8 units per 24 hour.

Complications

Cerebral oedema

Main article: Cerebral oedema

Cerebral oedema is a potentially life-threatening complication of hyponatraemia, usually only seen in case of severe acute hyponatraemia. Oedema increases the intracranial pressure, which can cause cerebral herniation.

Osmotic demyelination syndrome

Osmotic demyelination syndrome (ODS), previously called central pontine myelinolysis, is a complication of too rapid correction of severe chronic hyponatraemia. This is rare in case of sodium levels above 120 mmol/L or if the hyponatraemia has occured within a few days (as the body's compensatory mechanisms haven't kicked in yet).

Symptoms of ODS occur a few days after the correction, and include cerebellar symptoms and other neurological deficits. Some may experience locked-in syndrome. It may be reversible in some cases.